Molecular signaling in bone fracture healing and distraction osteogenesis.
نویسندگان
چکیده
The process of fracture healing has been described in detail in many histological studies. Recent work has focused on the mechanisms by which growth and differentiation factors regulate the fracture healing process. Rapid progress in skeletal cellular and molecular biology has led to the identification of many signaling molecules associated with the formation of skeletal tissues, including members of the transforming growth factor-beta (TGF-beta) superfamily and the insulin-like growth factor (IGF) family. Increasing evidence indicates that they are critical regulators of cellular proliferation, differentiation, extracellular matrix biosynthesis and mineralization. Limb lengthening procedure (distraction osteogenesis) is a relevant model to investigate the in vivo correlation between mechanical stimulation and biological responses as the callus is stretched by a proper rate and rhythm of mechanical strain. This model also provides additional insights into the molecular and cellular events during bone fracture repair. TGF-beta 1 was significantly increased in both the distracted callus and the fracture callus. The increased level of TGF-beta 1, together with a low concentration of calcium and an enhanced level of collagen synthesis, was maintained in the distracted callus as long as mechanical strain was applied. Less mineralization is also associated with a low level of osteocalcin production. These observations provide further insights into the molecular basis for the cellular events during distraction osteogenesis.
منابع مشابه
Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis
متن کامل
Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis.
Fracture healing and distraction osteogenesis have important applications in orthopedic, maxillofacial, and periodontal treatment. In this review, the cellular and molecular mechanisms that regulate fracture repair are contrasted with bone regeneration that occurs during distraction osteogenesis. While both processes have many common features, unique differences are observed in the temporal app...
متن کاملSkeletal Repair in Distraction Osteogenesis: Mechanisms and Enhancements.
COPYRIGHT © 2015 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED » Distraction osteogenesis, utilized for reconstruction of skeletal deformities and bone defects, encompasses three phases of repair that are distinct from those of fracture-healing: latency, distraction, and consolidation. During distraction, osteogenic potential is maintained because of a number of molecular, cellular, an...
متن کاملCreating rigidly stabilized fractures for assessing intramembranous ossification, distraction osteogenesis, or healing of critical sized defects.
Assessing modes of skeletal repair is essential for developing therapies to be used clinically to treat fractures. Mechanical stability plays a large role in healing of bone injuries. In the worst-case scenario mechanical instability can lead to delayed or non-union in humans. However, motion can also stimulate the healing process. In fractures that have motion cartilage forms to stabilize the ...
متن کاملSimulating lateral distraction osteogenesis
Distraction osteogenesis is an effective method for generating large amounts of bone in situ for treating pathologies such as large bone defects or skeletal malformations, for instance leg-length discrepancies. While an optimized distraction procedure might have the potential to reduce the rate of complications significantly, our knowledge of the underlying mechanobiological processes is still ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Histology and histopathology
دوره 14 2 شماره
صفحات -
تاریخ انتشار 1999